In Vitro Growth and Analysis of Candida Biofilms
Evaluation of fungal biofilm formation can be performed using several techniques. In this protocol, we describe methods used to form Candida biofilms on three different medical device substrates (denture strips, catheter disks and contact lenses) to quantify them and to evaluate their architecture and drug susceptibility.
Fusarium and Candida Albicans Biofilms on Soft Contact Lenses: Model Development, Influence of Lens Type, and Susceptibility to Lens Care Solutions
Fungal keratitis is commonly caused by Fusarium species and less commonly by Candida species. Recent outbreaks of Fusarium keratitis were associated with contact lens wear and with ReNu with MoistureLoc contact lens care solution, and biofilm formation on contact lens/lens cases was proposed to play a role in this outbreak.
Interaction of Candida Albicans with Adherent Human Peripheral Blood Mononuclear Cells Increases C. Albicans Biofilm Formation and Results in Differential Expression of Pro- and Anti-inflammatory Cytokines
Monocytes and macrophages are the cell types most commonly associated with the innate immune response against Candida albicans infection. Interactions between the host immune system and Candida organisms have been investigated for planktonic Candida cells, but no studies have addressed these interactions in a biofilm environment.
Mechanism of Fluconazole Resistance in Candida Albicans Biofilms: Phase-specific Role of Efflux Pumps and Membrane Sterols
Candida albicans biofilms are formed through three distinct developmental phases and are associated with high fluconazole (FLU) resistance. In the present study, we used a set of isogenic Candida strains lacking one or more of the drug efflux pumps Cdr1p, Cdr2p, and Mdr1p to determine their role in FLU resistance of biofilms. Additionally, variation in sterol profile as a possible mechanism of drug resistance was investigated.
Biofilm Formation by the Fungal Pathogen Candida Albicans: Development, Architecture, and Drug Resistance
Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases.